Article dans une revue avec comité de lecture

Parameter identification and computational simulation of polyurethane foaming process by finite pointset method
International Journal of Material Forming, Vol. 9, pp. 85-100, 2016.

par   Hichem ABDESSALAM , Boussad ABBES , Yu Ming LI , Ying Qiao GUO , E. Kwassi , J.L. Romain

Résumé :


Numerical simulation of the polyurethane foaming process is a valuable method to analyze the molding process at an early stage of product development to shorten time-to-market cycles and cut costs by using fewer prototypes. However, this process involves highly coupled thermo-chemo-rheological modeling and needs adequate model parameters’ identification. A theoretical model including chemical reactions and thermo-rheological coupling of conservation equations was developed. Based on the theoretical model, three-dimensional numerical simulation for mold filling of the polyurethane foam was carried out by using Finite Pointset Method (FPM) to predict flow field, flow front advancement, temperature and density distributions during mold filling. A FOAMAT system was used to monitor foam height rise and reaction temperature on a cylindrical test tube and foam viscosity was measured by using a dynamic rotational rheometer with parallel-plate system. The parameters of the model were identified by an inverse analysis method which consists in determining the parameters by comparing the computed quantities to those measured experimentally. The overall modeling was validated by using short shot foams obtained with a panel mold cavity. Mold filling of an automotive underlay carpet cavity was investigated numerically. Flow front results were successfully compared to short shot foams obtained with the industrial mold cavity.

SCImago Journal

Thématique du GRESPI concernée par cet article :



  • 42ème congrès de la Société de Biomécanique 2,3 et 4 novembre 2017 Reims, France.
    JPEG - 211.3 ko